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INTRODUCTION

In recent years, there has been a rapid growth in the ability to obtain detailed data on large

complex structures in three dimensions. This development occurred first in the medical f'mld, with
CAT scans and now magnetic resonance imaging, and in seismological exploration. With the

advances in supercomputing and computational fluid dynamics, and in experimental techniques in

fluid dynamics, there is now the ability to produce similar large data fields representing 3D struc-

tures and phenomena in these disciplines.

These developments have produced a situation in which currently we have access to data which
is too complex to be understood using the tools available for data reduction and presentation.

Researchers in these areas are becoming limited by their ability to visualize and comprehend the 3D

systems they are measuring and simulating.

HISTORY

In response to this, there is growing activity in the area of visualization of 3D data. Some early

work in this area was done by Harris et al. (1979) at the Mayo Clinic and Herman et al. (1984) at

the University of Pennsylvania in the area of medical imaging. In 1983, Jaffey, Dutta, and

Hesselink (1984) approached the subject from a different direction. They developed the "source-

attenuation" model, and used holograms to visualize 3D subjects. More recently, there is stronger

emphasis on interactive visualization, and concentration on techniques and systems for general use
and commercial products (Goldwasser, 1985; Hunter, 1984).

Much of the recent activity is directed toward improving and extending the use of graphics

techniques for interactive visualization of data based on surface representations. The groundwork

for this was done by Herman et al. Work in this area is continuing both in academic groups

(Herman at the University of Pennsylvania (Herman et al., 1984 and Fuchs at North Carolina

(Fuchs et al., 1985), and in several commercial ventures (notably CEMAX)). Also, graphics pro-

jects at NASA, JPL, and aerospace corporations have been providing increasing support for visu-

alization tasks based on conventional graphics concepts.

The more interesting projects involve departures from conventional graphics. By careful use of

transparency, it is possible to produce images of 3D systems which provide true volumetric visu-

alization, rather than surface projections. We have been working on this type of system for the

past three years (Russell and Miles, 1987), concentrating on techniques which are efficient enough
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to be used inter'actively on existing computer systems. Pixar Corporation has recently been devel-

oping a package to support volumetric visualization, including an approach called Volume
Rendering Technique, which they developed with Phillips Medical Systems and Dr. E. Fishman

(1987) of Johns Hopkins University. This package is perhaps the most comprehensive image-
based system commercially available at this time.

An approximation to volumetric imaging is also provided in PLOT3D, a graphics software

system developed at JPL. This package includes a facility for producing nested transparent con-

tour surfaces from a volumetric data base, which provides surprisingly good visualization of the
data. Its primary limitations are data size (about 100,000 data points) and the number of contours

it can support. Also, since this is a rather symbolic representation, it must be interpreted with care.

VOLUMETRIC VS. 2 1/2D VISUALIZATION

Normal pictorial illustration (stills), and most widely used 3D graphics techniques are limited to

providing 2 1/2D surface images. That is to say, along any line of sight there is only one object or
surface visible. This usually produces pictures from which a rough idea of the three-dimensional

structure of the original scene can be deduced. In contrast, X-ray images generally do not have a

unique interpretation as projections of some three-dimensional subject, and even X-ray stereo pairs

axe insufficient to provide an unambiguous interpretation without a priori knowledge about the
subject.

This is a computational constraint which applies not only to visual observation of pictures, but

to interpretation of volumetric projections in general. Vision, however, is capable of limited volu-
metric perception and comprehension, if given adequate stimulus.

In order to achieve effective volumetric perception, it is necessary to present volumetric data in

a form that vision is accustomed to dealing with. While cross sections are often useful for detailed

study of internal features, it is difficult or impossible to fully comprehend the 3D structure of an

object in this manner. Instead, data must be presented as we would see a real object. Natural
visual processing transforms this information back into a mental structural model. Volumetric

characteristics of the data are conveyed by making the projection TRANSPARENT, as implied in
the earlier discussion.

The requirements for volumetric perception are basically the same as for computed axial

tomography. A set of projection images from many different viewpoints is computationaUy suffi-
cient to reconstruct the internal details of a subject. Visual reconstruction has several added con-

straints: the images must be presented as an ordered sequence of closely spaced views, and they

must be shown at a rate of at least 8 to 10 frames/see. These constraints are dictated by the tempo-
ral character of visual perception.

For perception of volumetric structure (rather than surface structure), complex optical phenom-
ena such as lighting and shading, specular (surface) reflections, and diffraction and diffusion are

not useful. In fact, these effects generally make the basic structure of volumetric scenes more dif-

ficult to understand, overwhelming the viewer with fine details and optical distortions. Simple
luminance and opacity are adequate for volumetric visualization.
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SYSTEM IMPLEMENTATION

We have developed a system at Princeton which implements this approach to volumetric visu-

alization on a PC/AT (Russell and Miles, 1987). The algorithms upon which it is based are effi-

cient enough to provide a usable off line visualization system on the AT (precomputed images take

approximately 1 min/view for 2 million data points) and they are suitable for development into a

real-time interactive visualization system using current state-of-the-art commercial hardware

(AT&T Pixel Machine, for example).

The model for the system has the following characteristics.

1. Data consists of samples on any regular 3D lattice (e.g., simple cubic, face-centered cubic,

hexagonal close packed).

2. The data dements are treated as nebulous, fuzzy regions localized around the sample coor-

dinates. (i.e., no subvoxel definition-consistent with proper sampling technique).

3. Optical model includes luminance and opacity control at each data point, with the possibility

of handling a light source (no refraction or specular reflection).

4. Views are computed directly from the data, without any intermediate representation. This

reduces the risk of artifacts and avoids simplification of the data that may lead to the loss of
features.

5. Perspective is not supported (this is subordinate to motion).

This combination of characteristics yields a model which is well-behaved and computationally

efficient, with enough flexibility to provide a broad range of visual effects.

The implementation on the PC/AT operates in a two-step process. For a given data base, a

sequence of views is computed, based on a selected set of optical characteristics onto which the

data are mapped, and a viewpoint and axis of rotation for the data. Each image takes about 60 to
75 see, for a typical data base of 2 million samples (e.g., 32x256x256 or 128x128x128), and we

usually generate anywhere from 15 images (for a restricted range of views) to 120 images (for a

full rotation of the data). The images are stored on a disk as they are generated. When a sequence

is complete, the images are loaded by a second program for viewing. Up to 180 clipped images

(176x176) may be loaded into 6 Mbytes of RAM on the PC/AT. They may then be viewed as a
movie on a full-color, 8-bit greyscale display at frame rates up to 15 frames/sec. The viewpoint is

controlled interactively using a mouse, within the precomputed range.

EVALUATION

This method of visualization provides good comprehension for a range of subjects and optical

characteristics. Its most significant advantage is that it is very robust. There is little or no prepro-

cessing of the data, so there are generally no computational artifacts. Even data containing no

distinct surfaces can be accurately visualized, since this method does not rely on surfaces as the
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fundamental elements of a scene. The use of motion as the means of communicating structure

allows all the data to be made visible through the use of transparency. This provides a high degree
of confidence in the resulting visualization. It is also robust in the sense that an informative set of

images can be produced using simple optical characteristics (luminance = data value, high trans-
parency) with little or no a priori knowledge about the data itself.

The motion/transparency approach is most effective with scenes of moderate complexity (such

as that shown in Fig. 1), that is, scenes whose structure can be largely comprehended as a whole.

With very complex scenes, containing perhaps hundreds of detailed components (e.g., a video
cassette recorder guts), this type of visualization suffers from showing too much information,

which cannot be fully comprehended as a single entity.

COMPLEXITY

The issue of complexity arises in visualization for two distinct reasons. The first is the visual

limitation just mentioned. The mind is incapable of performing a complete internal reconstruction

of a volumetric scene, as is done in a CAT scan, for example. We have observed that beyond a

certain level of complexity in depth (apparently three to four layers of structure), the mind's ability
to maintain a conceptual model of a scene begins to fail.

In addition to the visual/conceptual limitation, there is an optical constraint which limits the
degree of complexity which is practically acceptable. There is a tradeoff between the amount of

transparency used (which affects the visibility of embedded structures) and the amount of contrast

available in small features. This is directly related to signal-to-noise (S/N) ratio. Vision does not

have particularly large S/N ratio, so fine details quickly lose definition as transparency is increased.
This is also a limiting factor in CAT scans, but the devices used have much higher S/N ratios, so

much lower contrast can be tolerated in CAT-scan source images than is detectable visually.

These considerations provide strong motivation to develop means of reducing and controlling
the level of complexity in volumetric visualization.

THE ROLE OF BINOCULAR VISION

From a very early point in our investigation of visualization, it was clear that stereo pairs were

inadequate as illustration of volumetric scenes. Once we had a working visualization system based
on motion, it was easy to see how much more comprehensive this approach is than static stereo

viewing. For some time, we assumed that adding stereopsis to the motion-based system would

not be worthwhile, since static experiments suggested that stereopsis would not work well on pre-

cisely those scenes where some improvement was needed. Specifically, scenes with extensive
volumetric content and high complexity, such as medical data, generally have low contrast and few

clearly defined, unique features on which stereopsis can operate. For scenes which are visualized

with low transparency, which provides more distinct features, stereopsis is not really needed since

these scenes are generally quite easily understood with only the motion-based visualization.
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Whenweactuallywere able to try out stereo and motion together, the results were somewhat

surprising. With scenes of medical data with moderate to high transparency, static stereo viewing
is relatively ineffective, as expected. However, when motion and stereo viewing are used

together, the stereopsis provides noticeable enhancement to the visual perception of the structure

over motion alone. There is apparently some interaction between the visual mechanisms which use
stereo and motion to deduce structure. The combined effectiveness suggests that stereopsis is

facilitated by information made available by motion, which perhaps allows better feature matching

between images, resulting in more and better disparity measurements.

This strong interaction between stereopsis and motion perception means that stereopsis must be

considered as an important part of any visualization system. Though motion is very powerful
alone, considerable enhancement is possible through the use of binocular vision.

CONCLUSIONS

This approach to visualization, using transparency and motion in an image-based system, has

significant advantages over systems based on solid rendering or graphical modeling. Most signifi-
cant are the broader range of volumetric structure which can be visually represented and the

robustness and freedom from artifact which volumetric visualization provides. A comprehensive

visumization facility should certainly include the ability to perform both image-based and graphical

rendering, and in the future these techniques should be increasingly integrated to allow both

graphical and image-based components . a single visualization.

Computers are now becoming available which will be capable of performing visualization tasks
interactively. This will dramatically change the way in which visualization is used, particularly for

very complex subjects. As interactive visualization becomes more practical, the current emphasis

on development of techniques for data reduction and rendering should be supplanted by the need

for means of controlling and interacting with the visualization process. As the potential degrees of

freedom for controlling a visualization increase with the complexity and size of scenes, the design
of effective control mechanisms will be a difficult endeavor.

Some simple control mechanisms, such as clipping, spatial editing tools, and 3D cursors, are

relatively easy to implement. However, for complex data, control mechanisms should parallel the

way in which structures are decomposed and manipulated conceptually. This means providing the
capability to specify the structural components of a scene and control their visual characteristics by

referring to them as objects. Automated or computer-aided object segmentation is required to make

this practical, but for the purpose of interactive control of visualizations, the accuracy and reliability

of segmentations need not be as high as it must for conventional, noninteractive visualization.

Additionally, it may be useful to be able to produce geometric distortions of data in order to

push obstructing objects out of the way without separating them altogether from the region of
interest. The net effect would be to produce the equivalent of an exploded view for structures of

nondiscrete components. This would be particularly useful in medical applications. If information

about connectivity and stiffness can be incorporated into the process, this could make the visual-

ization system even more useful in surgical training or preoperative planning environments, where

the mechanical properties of tissue structures is very important.
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Advancedmodes of interaction will become more and more important as volumetric display is
applied to more ambitious problems of data interpretation.

This work was supported by Princeton University School of Engineering. Additional support
for G. Russell was provided by the Office of Naval Research through their Graduate Fellowship
program.
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Figure 1.- Vortex rings resulting from the Crow instability. Navier-Stokes simulation data pro-

vided by Dr. Micheal Shelley, Princeton University.
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FINAL PROGRAM

Spatial Displays and Spatial Instruments:

A Symposium and Workshop

Sponsored by the
National Aeronautics and Space Administration

and the

University of California, Berkeley

August 31 - September 3, 1987
Asilomar, California

August 31

2:00-5:00 pm

4:00-5:00 pm

6:00 pm

7:00-8:00 pm

September 1

7:30-8:20 am

8:20-12:30 pm

Check-in and Orientation

Reception

Dinner

Welcomes

D. Nagel

Chief: Aerospace Human Factors
Ames Research Center

Conference Purpose
Pictorial Communication

S. R. Ellis

Ames Research Center

The Role of Pictorial Communication in Aerospace

M. W. McGreevy
Ames Research Center

Conference Logistics, etc.

M. Moultray and S. R. Ellis

Breakfast

Invited Paper Session 1
Chairman: S. R. Ellis
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SPATIAL PERCEPTION

8:30 am "Perspectives on Perspective"
Professor R. L. Gregory

University of Bristol Medical School

Introduction by S. R. Ellis

5-min discussion

9:05 am "Visual Realism in Boeing Simulators"
C. Kraft

Formerly Boeing Commercial Aircraft Company
Introduction by J. Cutting

5-min discussion

9:40 am 10-min Coffee Break

SPATIAL ORIENTATION

9:50 am "Perception of Egocentric Visual Direction"
Professor I. Howard

York University

Introduction by H. Mittelstaedt

5-min discussion

10:25 am "Egocentric Direction in Simulators"
T. Fumess

Wright-Patterson Air Force Base

Introduction by S. Fisher

5-min discussion

PICTURE PERCEPTION

11:00 am "Picture Perception and Virtual Space"

Professor H. A. Sedgwick

SUNY College of Optometry

Introduction by J. Perrone

5-min discussion

11:35 am "The Design of Pictorial Displays"
Professor S. Roscoe

New Mexico State University

Introduction by J. Hartzell

5-min discussion
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12:20--1:30 pm

1:30-5:50 pm

Lunch Break

Contributed Paper Session
Chairman: M. Kaiser

SPATIAL PERCEPTION

1:30 pm

1:50 pm

"Spatial Factors Influencing Stereopsis
and Fusion"

Professor C. Schor

U.C. Berkeley

"Scaling Stereoscopic Space"

Professor J. Foley
U.C. Santa Barbara

2:10pm

2:30 pm

2:50 pm

"Paradoxical Monocular Stereopsis and

Perspective Vergence"

Professor J. T. Enright

Scripps Institution of Oceanography

"The Perception of Three

Dimensionality Across Continuous
Surfaces"

Professor K. Stevens

University of Oregon

"Perceiving Environmental Properties
From Motion Information: Minimal

Conditions"
Professor D. Proffitt

University of Virginia
and

M. Kaiser

Ames Research Center

SPATIAL ORIENTATION

3:10pm "Memory Distoritons of Visual

Displays"

Professor B. Tversky

Stanford University

3:30 pm 20-min Coffee Break
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6:00-7:30pm

PICTUREPERCEPTION

3:50pm "TheEffectof Changesin Viewpoint
on thePictorialPerceptionsof Spatial
Layout and Orientation Relative to the
Observer"

Professor B. Goldstein

University of Pittsburgh

4:10pm "Cinematic Efficacy, or What the Visual

System Did Not Evolve to Do"

Professor J. Cutting

Comell University

4:30 pm "Congruence Under Motion as a Basis
for the Perceived Geometrical Structure

of Forms andSpaces"

Professor J. Lappin

Vanderbilt University
and

Dr. T. Wason

ALLOTECH

4:50 pm "A Theoretical Analysis of the

Recognition of Pictorial Displays"
Professor I. Biederman
SUNY Buffalo

5:10 pm "Spatial Displays and Spatial

Instruments from the Graphics Design

Perspective"
A. Marcus

Aaron Marcus Associates

5:30 pm "Interactive Displays in Medical Art"

Professor D. McConathy

University of Illinois

Dinner
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8:00--10:00pm PosterSessionsandInformalDiscussion

"SyntheticPerspectiveOpticalHow: Influenceon
Pilot Control Tasks"

T. Bennett, W. Johnson, and J. Perrone
Ames Research Center
and

A. Phatak

Analytical Mechanics Associates
Ames Research Center

"Visual Enhancements and Control in Telerobotics"

W. S. Kim, F. Tendrick, and Professor L. Stark

U.C. Berkeley

"Visual Slant Underestimation"

J. Perrone and P. Wenderoth

Ames Research Center and University of Sydney

"Optical and Gravitational Information in the

Perception of Eye Level"

Professor A. Stoper and M. Cohen
Ames Research Center

"Interactive Spatial Instruments for Proximity

Operations" (video)
Professor A. Grunwald and S. R. Ellis

Ames Research Center

"Exocentric Direction Judgements Based on Pictorial

and Real-World Layouts" (video)

S. R. Ellis, Professor A. Grunwald, and S. Smith
Ames Research Center

"Criteria for the Successful Representation of
Information"

Professor M. Hagen
Boston University

"Development of a Stereo 3-D Pictorial Primary

Hight Display" (video)

M. Nataupsky
Langley Research Center
and

T. Turner, H. Lane, and L. Crittenden

Research Triangle Institute
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"Representational Structure for Evaluation of

Human/Robotic System Control"
K. Corker

BBN Laboratories Incorporated

"Adaptation to Non-Zero Disarrangement of the
Visual Field"

Professor R. Welch and M. Cohen

Ames Research Center

"Theoretical Issues in the Development of a 2-D and

3-D Computer-Aided Designer Support System"
J. Hartzell

Ames Research Center

"Telepresence in Dataspace" (video)
S. Fisher

Ames Research Center

"The Photo-Colorimetric Space as a Medium for the

Representation of Spatial Data"
K. F. Kraiss and H. Widdel

Forschungsinstitut fiir Anthropotechnik

"The Role of Attensity in Spatial Perception"
M. Companion

Lockheed-Georgia Company

"Achieving a Concrete 'UP': Embodiment of Spatial

Relationships in a Head-Mounted Display System"
(video)
W. Robinett

Ames Research Center

"Requirements and Features of a Synesthetic

Supermedium"
Professor R. Mallar

ATARI Computer

Arstechnica: Center for Art and Technology
University of Massachussetts

"Helmet Mounted Displays---Spatial Orientation
Problems"

S. Hart

Ames Research Center
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September 2

7:30-8:30 am

8:30-12:00 am

"How to Reinforce Perception of Depth in Single
Two-Dimensional Pictures"

S. Nagata
NHK Science and Technical Research Laboratory

"Direction of Movement Effects Under Transformed

Visual-Motor Mappings"

H. Cunningham and Professor M. Pavel
Stanford University

"Efficiency of Graphical Perception" (video)

Y. Gu, Professor G. Legge, and A. Luebker

University of Minnesota

"Applications of Human Factors for Cartography and

Geography"
Professor George F. McCleary

University of Kansas

"Interactive Digital Video Interface to an Atlas of

Histology"

Michael D. Doyle

University of Illinois, Urbana-Champaign

Breakfast

Invited Paper Session 2
Chairman: S. R. Ellis

MANIPULATIVE CONTROL

8:35 am "Visuo-Motor Plasticity and Time Lags"
R. Held and N. Durlach

M1T

Introduction by D. Fadden

5-min discussion

9:10 am "Displays and Controls for the Space Shuttle Arm"
G. M. McKinnon

CAE Electronics Ltd.

Introduction by B. Bridgeman

5-min discussion

9:45 am 10-min Coffee Break
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12:30-1:45 pm

1:50-5:30 pm

VESTIBULAR ASPECTS

9:55 am "Theories of Visual-Vestibular Interaction"

C. Oman

M1T

Introduction by R. Haines

5-min discussion

10:40 am "Vestibular Realism in Simulators"

J. Sinacori

Consulting engineer
Carmel, California

Introduction by E. Palmer

5-min discussion

COMPUTER GRAPHICS

11:15 am "Graphics Hardware and Software: Coming
Attractions"

F. Baskett

Silicon Graphics Inc.

Introduction by (to be determined)

5-min discussion

11:50 am "The Making of the Mechanical Universe"
J. F. Blinn

JPL Graphics Laboratory

Introduction by M. Kaiser

5-min discussion

Luncheon

Speaker: J. P. Alien

Space Industries Inc.

(former Shuttle astronaut)

"The Challenges of Flying the Manned Maneuvering Unit in Earth Orbit"

Contributed Papers
Chairman: A. Grunwald

MANIPULATIVE CONTROL

1:50 pm "Two Modes of Visual Representation"

Professor B. Bridgeman
U.C. Santa Cruz
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2:10 pm "Perception-Action Relationships Reconsidered"
Professor W. Shebilske

Texas A&M University

2:30 pm "A Computer Graphics System for Visualizing

Spacecraft in Orbit"

D. Eyles

Charles Draper Laboratories

2:50 pm "Displays for Telemanipulations"

B. Hannaford, M. Salganicoff, and A. Bejczy

Jet Propulsion Laboratory

3:10 pm "Experience in Teleoperation of Land Vehicles"
D. McGovem

Sandia National Laboratories

3:30 pm "Spatial Displays and Pilot Control: Where Do We
Go From Here?

D. Fadden, R. Braune, and J. Wiedemann

Boeing Commercial Airplane Company

3:50 pm 20 min Coffee Break

VESTIBULAR ASPECTS

4:10 pm "Determinants of Space Perception in

Weightlessness"
Professor H. Mittelstaedt

Max Planck Institut f'tir Verhaltensphysiologie

4:30 pm "Voluntary Presetting of the Vestibular Ocular Reflex
Permits Gaze Stabilization Despite Perturbation of
Fast Head Movements"

Professor W. Zangemeister

Neurologische Klinik der Universit_t

Hamburg
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6:00-8:00pm

September 3

7:30-8:30 am

8:30-9:00 am

10:00 am

ll:30am

11:30-12:30 pm

12:30-2:30 pm

2:35 pm

4:00--4:15 pm

COMPUTER GRAPHICS

4:50 pm "Wide Angle Display Developments by Computer
Graphics"
W. A. Fetter

Siroco

5:10 pm "Visualizing Space Filling Data"
G. Russell

Princeton University

BBQ on Asilomar Terrace

Breakfast

Summary Session

Summary: L. Stark/U.C. Berkeley
Thanks to all
Checkout

Leave for tours of Ames Research Center

Arrive Ames Research Center

Lunch at Ames Cafeteria (not included in conference fee)

Open House at Aerospace Human Factors Division and possibly

Vestibular Research Facility

Leave for Return to Asilomar

Arrive Monterey Airport/Asilomar Conference Center
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